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Abstract

We reconsider the linear stability of pressure-driven flow of two Oldroyd-B or UCM fluids symmetrically placed in a channel or a pipe (a
“coextrusion flow”). The fluids have matched viscosities but different relaxation times. Inertia and surface tension are neglected. We focus on the
high Weissenberg number limit, where the distance travelled by a fluid particle in a relaxation time is large compared to the width of the channel.
Given a prescribed location of the unperturbed interface, the growth rate at sufficiently high wavenumber can be deduced from previous analysis
of Couette flow [Y. Renardy, Stability of the interface in two-layer Couette flow of upper convected Maxwell liquids, J. Non-Newtonian Fluid
Mech. 28 (1988) 99-115; K. Chen, D.D. Joseph, Elastic short-wave instability in extrusion flows of viscoelastic liquids, J. Non-Newtonian Fluid
Mech. 42 (1992) 189-211; J.C. Miller, J.M. Rallison, Interfacial instability between sheared elastic liquids in a channel, submitted for publication];
however, we find that the structure of the perturbation flow differs from the Couette case.

A new regime with different stability properties was first observed in a companion paper [J.C. Miller, J.M. Rallison, Interfacial instability between
sheared elastic liquids in a channel, submitted for publication]. In this narrow-core regime the fraction of the channel occupied by the inner fluid
is small and the wavenumber is large. We examine the corresponding distinguished limit and demonstrate that instability can occur at intermediate
wavenumbers in flow geometries for which the long-wave and short-wave limits are both stable, contradicting some literature claims [P. Laure,
H.L. Meur, Y. Demay, J.C. Saut, S. Scotto, Linear stability of multilayer plane Poiseuille flows of Oldroyd-B fluids, J. Non-Newtonian Fluid Mech.
71 (1997) 1-23; S. Scotto, P. Laure, Linear stability of three-layer Poiseuille flow for Oldroyd-B fluids, J. Non-Newtonian Fluid Mech. 83 (1999)
71-92]. The wavespeed of this mode can be substantially higher than the speed of the base flow. The perturbation grows on the time-scale of the
shorter relaxation time of the two fluids. Although most of the analysis is performed for asymptotically large Weissenberg numbers, the instability
is found to persist for values which should be experimentally accessible. For core-annular pipe flow the curvature of the unperturbed interface plays
arole, and the stability characteristics of channel and pipe flow are found to be qualitatively different. In addition, we find some new instabilities
in channel flow which fall outside the categories previously identified. We demonstrate finally that on symmetry grounds analogous narrow-core
instabilities must arise for a wider class of elastic constitutive properties than Oldroyd-B.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the stability of symmetric three-layer Poiseuille
flow, a coextrusion flow, of two inertialess elastic fluids in a
channel as sketched in Fig. 1. The fluids are of Oldroyd-B or
UCM type with matched viscosities but different relaxation time
7. The channel has width 2L and the velocity at the center is Uj.
The inner fluid with relaxation time 7| occupies a fraction A of
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the channel width. We also study the analogous axisymmetric
core-annular flow in a pipe.

Flows in elastic fluids may be classified on the basis of the
Weissenberg number Wi = Uyt /L. In our context, Wi is best
thought of as the ratio of the relaxation length scale Uyt to the
channel width L. We are concerned here with flows for which
Wi> 1.

Previous work for a pipe [2,6,7] as well as for achannel [ 1,8,9]
has concentrated on limits in which the wavelength is long or
short compared to the channel width. These investigations have
implicitly made the additional assumption that the wavelength
is long or short compared to the distance travelled by the fluid
in a relaxation time. The short-wave modes are known to have
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Fig. 1. Coextrusion of two elastic fluids in a channel. The two Oldroyd-B or
UCM fluids differ in relaxation time t. There is no surface tension. The base
flow profile is U = Up(1 — y*/L?).

two distinct behaviors, depending on the size of the Weissenberg
number [1-3].

Several sample computations led to the claim in [4] that, for
the geometry of Fig. 1, if the long- and short-wave limits are both
stable then there is stability for all wavenumbers. This claim was
repeated in [5] for three non-symmetric layers. The fundamental
assertion behind this claim is that all the instabilities of this
geometry can be understood in the context of either long- or
short-waves. We find that in general this is false.

Recent work in a companion paper [3] concerning purely
elastic interfacial instabilities in Couette flow has shown that
there are three significant length scales for elastic fluids with
relaxation: the channel width L, the wavelength k!, and the rel-
ative distance that fluid particles travel in a relaxation time Uyt .
It was found that rather than classifying Couette modes into long-
and short-wave modes, it is more appropriate to classify them by
the longest of these three length scales. The classifications are
thus long-wave for which the wavelength is the longest, wide-
channel, for which the channel width is the longest, and fast-flow
for which the distance travelled in arelaxation time is the longest.
In this context the two short-wave behaviors observed by pre-
vious authors are distinct; short-wave modes at large Wi are a
subset of the fast-flow modes, while short-wave modes at small
Wi are a subset of the wide-channel modes. It was also shown in
[3] that there is an additional class of modes present in Poiseuille
flow when the relaxation length is the longest length scale and
the interface is close to the centerline. We refer to these as
narrow-core modes and they are the principal subject of this
paper. Further, we find some additional instabilities which do
not fit into any of these classifications; these are discussed at the
end of the paper.

We first review previous results for our geometry. In both
channels and pipes, the long-wave criteria are derived by noting
that, because the wavelength is long compared to the length
over which the elastic stress relaxes, the fluids behave as if
Newtonian except for a difference in elastic stress at the inter-
face. Consequently, the results apply more generally than to
just UCM or Oldroyd-B fluids. The criterion for stability of
long-waves in a channel was found by Wilson [8]. Varicose
long-wave modes are unstable if (A — V2 + D(tp—11) >0,
that is, if the fraction A occupied by the inner fluid is less
than +/2 — 1 and it is more elastic, or the fraction occupied by
the inner fluid is greater than /2 — 1 and it is less elastic. For
all A, sinuous long-wave modes are unstable if the outer fluid
is more elastic and stable otherwise. A similar criterion was

found by Hinch et al. [7] for axisymmetric core-annular pipe
flow.

In Couette flow, the wide-channel stability is determined by
effects close to the interface. In Poiseuille flow, so long as the
interface is not close to the walls or the centerline, local effects do
not distinguish between Couette and Poiseuille flows, and so they
have the same behavior. Wide-channel stability has previously
been studied in the special case of low Wi short-waves. The
stability criterion for UCM fluids was found by Renardy [1] for
Couette flow and the same criterion was found for core-annular
Poiseuille pipe flow by Chen and Joseph [2]. Wilson and Rallison
[9] found the Couette stability criterion for Oldroyd-B fluids. All
of these studies considered the case L > Upt; > k~ 1, although
the analysis applies to L > k~! > Uyt with the same result.
These flows are unstable if the fluids differ, but their growth rates
approach zero as Wi decreases.

Fast-flow modes have been studied previously in the spe-
cial case of large Wi short-waves with Upt; > L > k~!. These
have the same stability as Couette modes, again so long as the
interface is sufficiently far from the walls or centerline. The
corresponding UCM results were found for Couette flow by
Renardy [1] and the same results were found for core-annular
pipe Poiseuille flow by Chen and Joseph [2]. There is instability
when the two relaxation times differ but are not too different (i.e.,
) # 11 and "g‘c_l > 1p/11 > &, where &, ~ 0.28). Wilson and
Rallison [9] showed that Oldroyd-B fluids with sufficient New-
tonian viscosity give instability whenever the relaxation times
differ. It was shown in [3] that the Couette stability properties of
UCM and Oldroyd-B fluids do not change if Uyt > k> L,
that is, if the wavelength is long compared to the channel width
but still short compared to the relaxation length scale. In this
paper we find that Poiseuille modes in this limit also have the
same stability properties, though the mode structure is qualita-
tively different from that of Couette modes. Consequently we
refer to these modes as Couette-like fast-flow modes.

A new class of fast-flow modes appears in Poiseuille flow.
The Couette-like fast-flow growth rate is governed by a bound-
ary layer at the interface with thickness 1/kU’z. If U’/ U”, the
length over which the shear rate changes by an amount com-
parable to itself, is of the same order as the boundary layer
thickness then the boundary layer structure is affected and the
stability properties change. At the interface the ratio of these
two length scales for Poiseuille flow is proportional to kUt A>.
When this ratio is large (i.e., the interface is sufficiently far from
the centerline) the Couette-like fast-flow modes are found. How-
ever, when A ~ (Ugtk)™ 172 anew narrow-core regime emerges
which has not been examined previously. In either case, the
effect of the wall on the stability disappears provided that the
boundary layer thickness is small compared to the distance of
the interface from the wall, that is, if kUptA(1 — A) > 1. In
the narrow-core case only the dimensionless group A(Ugtk)!/?
and the ratio of relaxation times enter the problem. The narrow-
core instability is found to persist for some parameter values
when the length scales are not well-separated (because the Weis-
senberg number is not large or the wavelength is comparable
to the channel width). It can give rise to instabilities for val-
ues of A and Wi which are known to be stable to long-wave
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and wide-channel modes as well as to Couette-like fast-flow
modes.

This paper is organized as follows: in Section 2 we introduce
the governing equations. In Section 3 we discuss the modifica-
tions of the Couette fast-flow regime found in Poiseuille flow.
Section 4 contains the bulk of our results and investigates the
narrow-core instabilities in channel flow. Section 5 extends these
results in a core-annular pipe geometry. Section 6 discusses
other instabilities we have found which fall outside our clas-
sification. Finally in Section 7 we discuss implications of our
results.

2. Governing equations

We first consider two Oldroyd-B fluids in pressure-driven
flow through a two-dimensional channel as shown in Fig. 1.
The walls are at y = £L and the interfaces at y = =AL. The
inertialess equations governing the flow are

V.-2=0 ()

E:—Pl+u(2ﬂE+1;ﬂ ) P

& +U-VA—[VUI"-A-A.[VU] = %(I —A),

3)

VU) + (VU)T
g= TD+ T @
V.-U=0 %)

where X is the stress which depends on the elastic strain A
and the rate of strain E . U is the fluid velocity. The fluids
have matched constant shear viscosity u, divided into elastic
and Newtonian contributions by the parameter 8. The fluids dif-
fer because they have different relaxation times 71 and 7. When
B = 0 the fluids are Upper Convected Maxwell (UCM), while
B =1 gives two identical Newtonian fluids.
We apply no-slip conditions

U=0

at the walls. At the interfaces, the velocity must be continuous
and so

[l =0,

where [ - ]| denotes the change in the bracketed quantity across
the interface. Additionally, in the absence of surface tension we
have

[X]1-N=0

where N is the unit normal pointing into the outer fluid.

For axisymmetric core-annular pipe flow with walls at r =
L and interface at r = AL the equations are unchanged and a
regularity condition is applied at » = 0.

2.1. The unperturbed flow

For the unperturbed flow, (3; + U- V)A = 0. The elastic
stress is given by

A (12007 W
- U’ 1)

with U(y) = Uy(1 — y?/L?) for channel flow.
For pipe flow in (7, 6, z) coordinates we similarly find

1 0 U’
A=| 0 1 0 )
w0 1427207

and U(r) = Up(1 — r?/L?).

In Appendix A we derive the linear perturbation equations
for modes proportional to exp(ikx — iwt) for real k and com-
plex w. We use lowercase letters to denote perturbations to their
uppercase counterparts.

2.2. Non-dimensionalization in the limit Wi > 1

As in [3], the scalings appropriate for large Wi flows are
non-standard. We derive the non-dimensionalized channel equa-
tions, using asterisks to denote dimensionless quantities. The
pipe equations are non-dimensionalized similarly.

In Section 1 we noted that if A ~ (Uork)_l/ 2 we encounter
the narrow-core regime. This motivates our choice of cross-
stream length as

(Uotik)'/?
-

We rescale times by 71 so that t{ = 1. The outer fluid then
has relaxation time 7} = £ = 12/71. The complex frequency w
becomes w* = 1] w.

We non-dimensionalize k! and x with the length scale Upty,
representing the distance the fluid travels during a relaxation
time. Thus,

k* = Uptik,
k — X
Uoti
It is convenient to use a streamfunction i so that u =

(Dy, —ikyr) where ‘D’ denotes differentiation with respect to
y. We rescale v so that

*

The interface perturbation § is non-dimensionalized with
respect to k

8 = ké.

The a;; measuring elastic strain perturbation are already
dimensionless, but we rescale them as

kL\3/?
*
= E— s 6
an au(wl') (6)
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Fig. 2. The non-dimensionalized base flow.
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We now drop asterisks. The rescaled baseflow is shown in
Fig. 2. We write the leading order equations in the limit that Wi
is large. The neglected error terms are O(kWi~?).

The vorticity equation (A.1) becomes

T

1'6_ ﬂD41ﬂ + D%ays +iDaj; = 0, 9)
while the constitutive equations (A.2) become
aar) = —4yaps + 16it°y’Dy — 4ryD?y + 16it2yy,  (10)
aayy = —2yay + D*y + 872 y* Y — 2ity, (11)
aay = —4tyyr — 2iDyY (12)
where

o,
o= —iw+ ik — iy + —. (13)

T

At the interface y = Ak'/? the velocity continuity (A.7) and
(A.8) and force balance (A.9) and (A.10) become

[¥laxi2 =0, (14)

(DYl g2 = O, (15)

Hﬂlﬁw — 8iy%es + ‘mﬂ =0, (16)
I-8 T 1 Akt

HﬁiD3w 4 Daz _ a”ﬂ —0, (17)
1-8 T T || axl/2

and the kinematic boundary condition (A.6) becomes

(—iw + ik — iy*)§ = —iy. (18)
The boundary conditions (A.3) at the wall y = k!/? are

v =Dy =0 (19)

while the conditions (A.4) and (A.5) at the center y = 0 become

Dy =Dy =0

Yy =D =0

Setting £2 = w — k eliminates the wavenumber k except in
determining the location of the interface and the walls. At large

(sinuous), (20)

(varicose). (2D

k the walls are far from the interface and have no effect on the
growth rate. If Ak!/? is also large so that the interface is not
close to the center (and the shear rate is effectively constant)
we expect the same stability characteristics as for Couette flow
determined in [3]. However, if AkL/2 is not large, narrow-core
modes appear.

2.3. Numerical methods

We are unable to solve the eigenvalue problem defined by Eqs.
(9)—(21) analytically, and so we use a shooting algorithm and
a Chebyshev spectral algorithm both described in [3]. The two
algorithms reproduce results from [8—11]. In general they give
consistent results, but the shooting algorithm sometimes fails to
converge if either k becomes large or both A and k become small.
If Ak'/? is large, the spectral method requires high resolution.
These difficulties lead to lacunae in the figures presented for
some parameter values.

3. Couette-like fast-flow instabilities in channel
coextrusion flow (A fixed and Wi, k > 1)

For fast-flow the relaxation length is long compared to both
the wavelength and the channel width. There are two subclasses.
When the wavelength is shorter than the channel width the per-
turbation flow decays exponentially within a wavelength of the
interface. The results of Renardy [1] and Chen and Joseph [2]
for Couette flow apply immediately in this case. However, when
the wavelength is longer than the channel width, the perturbation
flow is not localized at the interface. The stability criteria found
in Couette flow [3] persist in Poiseuille flow as long as Ak'/% >>
1, but the mode structure is modified as described below.

3.1. UCM fluids

Fig. 3 shows the perturbation flow for sinuous and vari-
cose modes with £ = 0.5, A = 0.7, and k = 30. In both cases,
the flow decays exponentially in the less elastic outer fluid,
but is everywhere of order unity in the inner fluid. This mode
structure differs from that of Couette flow for which the per-
turbation flow is of order unity throughout both fluids. On the
other hand, the value of w predicted by the Couette calcula-
tion [3] is w = (1 — A?)k + 0.30544 + 0.06603i + O(1/k) =
15.60544 + 0.06603i + O(1/k), and our calculated results are
in close agreement: for the varicose mode w = 15.6203 +
0.0598i, while w = 15.6208 4+ 0.0590i for the sinuous mode.
Thus, as far as the growth rates are concerned, the two interfaces
do not interact despite the fact that the perturbation flow does
not decay between them: the Couette calculation for a single
interface suffices.

The velocity plots in Fig. 3 suggest the existence of a bound-
ary layer close to the center. The flux in this boundary layer
plays a role in preventing the interfaces from interacting. We
can see this more clearly by choosing a different geometry
that eliminates the lower interface, giving an asymmetric base
flow for which a single fluid occupies —k'/? <y < Ak'/2.
The resulting perturbation flow is shown in Fig. 4 for £ = 0.5,
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Fig. 3. UCM fluids. Perturbation flows for sinuous and varicose channel modes for £ = 0.5, A = 0.7, and k = 30. Walls are at y = +k'/2, and interfaces at
y = £ Ak'/2. (a) Streamlines for sinuous mode. (b) Perturbed sinuous x-velocity. (c) Streamlines for varicose mode. (d) Perturbed varicose x-velocity.

A = 0.7 with k = 30 and k£ = 500. For k = 30, the value of w
is w = 15.6205 + 0.05944i, close to the prediction above, while
for k = 500, it is w = 255.3063 + 0.0657i, which matches the
predicted value of w = 255.30544 4 0.06603i + O(1/k) well.
The boundary layer close to the center allows for a return flow
which keeps the net flux zero without requiring a flow in the
upper fluid or the lower half-channel.

A more rigorous argument showing that the large & limit of
Poiseuille fast-flow modes have the same growth rates as for
Couette fast-flow modes is found in [12].

3.2. Oldroyd-B fluids

Fast-flow Oldroyd-B modes were studied in [9] with the
wavelength short compared to the channel width. As §increases,
the range of & giving instability increases. For sufficiently large
B < 1 instability exists for all £. This result was also observed
for Upt; > k~' > L in [3]. The same behavior occurs for
Poiseuille flow (demonstrated later in Fig. 18). However, as for
UCM fluids, the structure of the mode changes.

4. Narrow-core instabilities in channel coextrusion flow
(Wi > 1, A~ k~1/2)

When the interfaces are sufficiently close to the center, the
variation in the base shear rate across the boundary layer affects

the stability properties and can lead to instabilities distinct from
those of Couette flow [3]. These new instabilities can occur
at intermediate wavenumbers, even when both small and large
wavenumber modes are stable.

For example, Fig. 5(a) shows the growth rates of varicose
modes for £ = 0.2 and A = 0.5, parameters for which both
sinuous and varicose modes are stable as kK — 0 and k — 0.
Fig. 5(b) shows the growth rates of sinuous modes for & = 0.2
and A = 0.3, for which sinuous modes are stable as kK — 0
and kK — oo. Both cases have instability at intermediate k. The
behavior can be more complicated [Fig. 5(c and d)], with multi-
ple unstable modes or multiple regions of instability for a single
mode. These instabilities frequently (but not always) travel faster
than the centerline of the base flow, so effects beyond advec-
tion of material would be needed to understand the instability
mechanism.

We plot contours of the maximum growth rate in (k, A) space
for different £ in Fig. 6 showing the long-wave varicose instabil-
ity(k > 0,4 < /2 — 1) and Couette-like fast-flow instabilities
(Afixed, k — 00,& > £.). Thereisalsoevidenceofa A ~ k—1/2
scaling, corresponding to the new narrow-core regime which can
be unstable for both sinuous and varicose modes.

We now investigate the narrow-core instabilities in more
detail for both UCM and Oldroyd-B fluids. We later confirm
numerically that these instabilities appear in the distinguished
limit k — 0o, Ak'/2 ~ 1 for which the effect of the walls is
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Fig. 4. Perturbation flows for UCM Poiseuille flow in a channel with a single interface at y = Ak'/? with £ = 0.5, A = 0.7, and k = 30 or 500. (a) Streamlines:
k = 30. (b) Perturbed x-velocity: k = 30. (c) Streamlines: k = 500. (d) Perturbed x-velocity: k = 500.

negligible. If k is decreased (and A increased keeping Ak!/?
fixed), the effect of the walls grows, but instability can persist
for k as small as 5.

4.1. UCM fluids

4.1.1. Instability at moderate k

We first consider varicose modes. The plots of Fig. 6 show
that the growth rates of modes in (k, A) space for fixed & have
an unstable fongue in the marginal stability curve at k ~ 5. In
Fig. 7 similar plots for smaller £ show multiple unstable tongues.
Our results suggest that the maximum number of tongues for
UCM fluids is three. As & increases, the tongues progressively
disappear until at § ~ 0.56 there are no tongues and there is
stability at moderate k for A > /2 — 1 (the k — O varicose
stability boundary).

These tongues identify the smallest values of k for which
narrow-core instabilities exist. They are of particular signifi-
cance because they give values of A for which both k — 0 and
k — oo limits are stable, but instability arises at moderate k
[e.g., Fig. 6(a) for A = 0.5].

In Fig. 7 we see that as & increases beyond 0.09 the sec-
ond tongue merges with the first, whereas if £ becomes small it
migrates to larger values of k. The local maxima of the marginal
stability curve locate the position of the tongues. We plot the val-

ues of the first two local maxima in Fig. 8(a). When & = 0.069
the first two tongues are marginally stable at A = 0.6023, and
so for these parameters there are two nonzero wavenumbers
which are marginally stable, shown in Fig. 8(b). As A decreases
below 0.6023 two varicose instabilities with different wavenum-
ber arise. Consequently there is a codimension-2 bifurcation for
this set of parameters.

We turn now to sinuous modes. For moderate k, Fig. 6 shows
that if & is sufficiently large, the flow is stable to narrow-core
modes. However, when £ is small, more than one unstable mode
exists, seen in Fig. 5(d) and in Fig. 9 both for £ = 0.025. Both
unstable modes have the A ~ k~!/2 scaling. The two modes
have substantially different growth rates. The faster growing
mode has a wavespeed greater than the base flow velocity at the
centerline of the channel.

4.1.2. Instability at large k

When £ is large and A is small, the influence of the walls at
y = k'/? becomes unimportant. The complex frequency w scales
like k + O(1), and so neither o [Eq. (13)] nor the kinematic
boundary condition [Eq. (18)] depend on k. The only appearance
of k or A in the problem is in the combination Ak!'/2. Conse-
quently we anticipate that the complex growth rate depends only
on & and Ak!/?. Fig. 10 verifies this by showing that for the
fastest growing mode Ak!/2 is fixed as k — oo. This implies
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Fig. 5. Sample dispersion relations for UCM channel flows. (a) Growth rates of varicose modes for £ = 0.2, A = 0.5 with Wi > 1 showing instability only for
intermediate wavenumbers. (b) Growth rates of sinuous modes for & = 0.2, A = 0.3 with Wi >> 1. Note that a mode enters the continuous spectrum at k ~ 20 (see
[11]). (c) Growth rates of varicose modes for &£ = 0.08, A = 0.58. Two distinct ranges of k are unstable for the same mode. (d) Growth rates of sinuous modes for

£ =0.025, A = 0.25. Two distinct modes are unstable.

that in an experiment with small A the fastest growing mode
has k oc A72.

Fig. 11 shows for this distinguished limit the marginal sta-
bility curves at large k for the full range 0 < & < oo, with a
rescaling of the axis for § > 1. As & — 0 the narrow-core insta-
bility exists for any value of Ak'/2. If Ak!/? ~ 1, the growth
rates are found to become large. There is a small island of stabil-
ity for £ ~ 0.06, Ak'/? ~ 2. In an experimental flow for which
A is fixed but k can vary, this island will manifest itself as a
window of wavelengths for which varicose modes are stable
surrounded by unstable wavelengths.

As & is increased past &, ~ (.28 a further varicose instability
appears for sufficiently large Ak'/2. This is the Couette-like fast-
flow instability discussed previously in Section 3. For & below,
but sufficiently close to, 1 the fast-flow mode is stable.

The growth rate must be zero at § = 1 (because the fluids are
identical) and generically crosses zero as & passes through 1. In
Fig. 11 stability reverses moving from £ — 1~ to £ — 17, That
is, if the flow is stable [unstable] with a slightly more elastic
inner fluid, then making the outer fluid slightly more elastic
destabilizes [stabilizes] the flow. When 1 < & < EC_] ~ 3.6 the
Couette-like fast-flow instability is present at sufficiently large
Ak'/? and is not clearly distinguished from the narrow-core

instability. As & increases past & ! the unstable region shrinks
rapidly, but does not disappear as & — oo. For sufficiently small
Ak'/? there is stability for any & > 1.

We show in the same manner the stability to sinuous perturba-
tions in Fig. 12. As in the varicose case, we find the Couette-like
fast-flow instability at sufficiently large Ak'/? if & < & < & !
unless £ = 1, but there is a narrow-core instability for small
&. This sinuous narrow-core instability is qualitatively different
from the varicose narrow-core instability in that it has much
larger growth rates and a maximum value of & of about 0.25.
When £ is greater than 1, a similar picture emerges to the vari-
cose modes, except that there is no stable region at small Ak!/2,
There is no analogue of the island of stability found in varicose
modes. The sinuous marginal stability curve passes through the
stable varicose island, and so part of the island corresponds to
aregion of instability to sinuous modes but stability to varicose
modes while part of it is stable to both.

At small values of £ the varicose growth rate diverges like
In(&), while the sinuous growth rates diverge like 1/&, with a
correction which appears to be logarithmic in £. In consequence,
when the relaxation time of the outer fluid is short compared to
the inner relaxation time, instabilities grow on the short time-
scale of the outer fluid. If we rescale time so that the outer
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Fig. 6. Equally spaced contours of UCM channel mode growth rates for Wi >> 1. Bold contours show stability boundaries. For fixed A as k — 0o, modes are stable
[unstable] if £ < & ~ 0.28 [1 > £ > &.]. For fixed Ak!/? (dashed lines) the narrow-core regime is found as k — oo. Numerical problems appear where parameter
continuation is difficult in the lower left and upper right corners. (a) Varicose: £ = 0.2 < &.. (b) Sinuous: £ = 0.2 < &.. (c) Varicose: £ = 0.3 > &.. (d) Sinuous:

£=10.3 > &. (e) Varicose: £ = 0.4 > &.. () Sinuous: £ = 0.4 > &,.

relaxation time becomes 1 then the sinuous growth rates tend to
positive constants (approximately 0.35 and 0.017) as the rescaled
inner relaxation time becomes infinite. In contrast, the growth
rate of the varicose mode tends to zero, as shown in Fig. 13.

4.1.3. Perturbation flow

The perturbation flow of varicose modes is of comparable
magnitude throughout the channel. There is a central bound-
ary layer with thickness O(1) and wall boundary layers with

thickness O(k~1/2) (Fig. 14). In contrast sinuous modes may
be shown to be exponentially small outside the central bound-
ary layer (Fig. 15), see [12]. The physical reason for this is as
follows: the varicose modes have a net mass flux in the central
boundary layer, and so the outer region must have an opposite
flux in order to satisfy conservation of mass. The only length
scale available to the outer region is the width of the channel
(as the wavelength is long compared to the width), and so the
flow fills the channel. In contrast, the sinuous modes have no net
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Fig. 7. Varicose mode growth rates for UCM flow in a channel. More than one unstable tongue exists at small £, but disappear for larger &. The tongues are associated
with the narrow-core modes occurring at fixed Ak'/? as k — oo (dashed lines). The shooting method has difficulties for k and A both small and for large k. The plot
in (a) was created using the spectral method and has extended horizontal and reduced vertical axes. (a) £ = 0.0125. Three tongues are present. (b) £ = 0.08. Only
two tongues are found. (c) £ = 0.09. The second tongue has almost merged with the primary tongue. (d) & = 0.6. The tongues no longer exist.

mass flux in the central boundary layer. Thus, there is no need
for flow in the outer region.

4.1.4. Wavespeed
From Eq. (13) we have @ = —iw + ik — iy> + 1/t which is
O(1) in the central boundary layer, and so as k — 0o we must

(a) A for first two peaks
0.7 T T y :

0.65¢
0.6f
0.55¢
0.5f

0.45p

0 0.1 0.2 0.3 0.4 0.5 0.6

§

have w = k + O(1). Hence, the mode travels with velocity 1
(equal to the base flow at the center) plus an O(1/k) correction.
Remarkably this correction can be positive, so that the wave
travels faster than any point in the base flow. This is shown

in Fig. 16. We conclude that advection cannot account for the
mechanism.

(b) Varicose growth rates for = 0.069; A = 0.6023
0.2 T T T . -

S[w]

Fig. 8. Varicose modes for UCM fluids in a channel. The maxima of the tongues gives the value of A at which a bifurcation occurs. The second tongue only has a
local maximum for a short range of £. At & = 0.069, A = 0.6023 both tongues are marginally stable. (a) Value of A at maxima of first two tongues. (b) At & = 0.069,

two bifurcations occur as A crosses 0.6023.
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Fig. 9. When & = 0.025 there are two unstable sinuous modes. One mode travels faster than the centerline. The other travels slower than the centerline (and slower

than the interface). The numerics could not resolve large values of Ak!/?
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Fig. 10. UCM channel flow. Interface location for fastest growing varicose mode
at each wavenumber with & = 0.2. For large k, the fastest growing mode has
Aock™12,

For £ = 0.2 there is a single unstable varicose mode. In
Fig. 16(a) we compare its wavespeed with the corresponding
interfacial velocity and the centerline velocity. The wave travels
faster than the centerline. For each value of k, we have selected
A to maximize the growth rate.

. (a) Growth rate of the most dangerous mode. One unstable mode obscures the other for
large k. (b) Growth rate of the most dangerous mode having wavespeed less than 1.

For sinuous flow we can have multiple unstable modes. We
take £ = 0.025 and consider two unstable modes separately. We
again select A to maximize each growth rate, plotting the same
quantities in Fig. 16(b and c) as in Fig. 16(a). In this case one
mode moves substantially faster than the centerline and inter-
face, while the other moves slower than both.

4.1.5. Finite Wi effects

The leading order corrections to the Wi >> 1 equations of
Section 2.2 are all O(kWi~2). These correction terms are often
small even for moderate values of Wi; the convergence is illus-
trated in Fig. 17. We have found narrow-core instability for Wi
as small as 4.

4.2. Oldroyd-B fluids

The addition of a Newtonian component of viscosity does
not stabilize narrow-core modes (see Fig. 18). For comparison,
we take £ = 0.2. When 1 — § is not small, at least two distinct
narrow-core modes are found with A ~ k~1/2. As g — 1, the
fluids become identical Newtonian fluids, and so the growth rates
at fixed k must tend to zero. However, this limit is not approached

0 0.2 0.4 0.6 0.8

1 I 1
1 5/4 5/3 5/2

3

Fig. 11. Marginal stability curves for varicose narrow-core UCM channel modes. Computations are performed for k = 4000. U and S denote unstable and stable

regions, respectively. Note that for £ > 1 the &-axis has been rescaled.
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Fig. 12. Marginal stability curves for sinuous narrow-core UCM channel modes. Computations are performed for k = 4000. U and S denote unstable and stable

regions, respectively. Note that for £ > 1 the £-axis has been rescaled.
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Fig. 13. UCM channel modes. Growth rate multiplied by &. This corresponds
to the growth rate scaled by the outer fluid relaxation time. For each mode and
value of &, A is chosen to maximize the growth rate.

uniformly ink. As 8 — 1, one mode appears to have A ~ ck~!/?
with ¢ growing. Another mode appears to keep approximately
the same size prefactor, but its growth rate reduces.

In Fig. 18(d) we see that for 8 = 0.99 the marginal stability
curve for which A — +/2 — 1 as k — 0 is almost parallel to the
k-axis until k is at least 100. Thus, although the corresponding
wavelength is not long compared to the relaxation length scale,
the long-wave result of [8,13] still applies. The reason is that as
B — 1, the elastic stress has an effect only at the interface and
the fluids may otherwise be taken to be Newtonian on the length
scale of the wavelength.

5. Instabilities in core-annular pipe coextrusion flow for
Wix>1

In this section we compare the stability of core-annular pipe
flow with the corresponding channel flow. We consider only
UCM fluids at large Wi.

For& = 0.2and £ = 0.3 we plot growth rates of axisymmetric
(m = 0) modes in Fig. 19 as k and A change. The results are qual-
itatively similar to those seen in Fig. 6 for channel flow. When
& = 0.2 we again find values of A for which both k¥ — 0 and
k — oo limits are stable, with an instability at an intermediate
value of &, due to a narrow-core instability.

Most other results also carry over from channel flow, but
there are some notable differences, particularly in the m =1
cork-screw modes as described below.

5.1. Fast-flow pipe modes (k — o0)

Holding A fixed and increasing k corresponds to the fast-
flow limit in which the relaxation length scale is large compared
to the wavelength, which is itself large compared to the pipe
width. In channel flow we found that the growth or decay of
two-dimensional modes is determined within a boundary layer
much thinner than the channel width. The curvature of the pipe
is negligible over this length scale and so the same modes exist,
regardless of the value of m.

For two-dimensional Couette flow [3] we found five distinct
fast-flow modes. At most one is unstable, and instability occurs
foré, < £ < & 'unless& = 1.InFig. 20 we plot the numerically
determined eigenvalues w for pipe flow withm =0 orm =1,
A = 0.3,k = 100, and £ between 0 and 1. We find all five modes
expected, and they are the same form = 0 and m = 1. However,
we also find one additional mode different form = Oandm = 1,
but always stable. For m = 0 the equations involving vy, a,4, and
agp decouple from the remainder, and this additional mode has
v, = v, = 0 (i.e., it is a pure swirl mode) and travels with the
velocity of the interface.

172 | — 00)

5.2. Narrow-core pipe modes (A ~ k™

The narrow-core regime of Section 4 persists for pipe flow,
but the curvature of the unperturbed interface remains important.
We plot the stability in Figs. 21 and 22. Near £ = 1, there is a
quadratic minimum in the growth rate close to the marginal sta-
bility curve if Ak'/? is not small, and so the (linear) interpolation
used to plot the contours is poor.

5.2.1. Axisymmetric (m = 0) modes

Fig. 21 shows the stability at k = 1000 for m = 0 modes. The
stability boundaries are qualitatively similar to varicose channel
modes as shown by a comparison of Figs. 21 and 11. For & > 1
the behaviors are practically identical. When & < 1 there are
some small differences. For channel flow [Fig. 11] there is a
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Fig. 15. The perturbation flows for UCM sinuous modes with k = 400 and & = 0.025. We take A = 0.043 for the fast mode and A = 0.064 for the slow mode,
chosen to maximize each growth rate. In contrast to varicose modes, these modes decay away from the central boundary layer. For the fast mode w = 418.58 + 7.66i
and for the slow mode w = 395.30 4 0.0985i. (a) Streamlines for the fast sinuous mode. (b) Fast mode perturbed x-velocity. (c) Streamlines for the slow sinuous
mode. (d) Slow mode perturbed x-velocity.
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Fig. 16. UCM fluids. Wavespeed of varicose and sinuous modes compared to the velocities of the centerline and interface. For each k, A is chosen to give the
maximum growth rate. (a) Wavespeed of varicose mode with £ = 0.2. (b) Wavespeed of fast-moving sinuous mode with & = 0.025. (c) Wavespeed of slow-moving
sinuous mode with & = 0.025.

small band of stability between the Couette-like fast-flow and
narrow-core instabilities; in pipe flow the two regions of insta-
bility overlap. The island of stability we found in channel flow
at small & changes qualitatively. Whereas in channel flow there
is varicose instability for fixed Ak!/? as & — 0, axisymmetric
modes are stable if Ak!/? is large enough. There is a thin island
of instability for axisymmetric modes.

(a) Growth rates for £=0.2 and A = 0.55

5.2.2. Cork-screw (m = 1) modes

Fig. 22 plots the stability at k = 1000 for m = 1 modes.
The qualitative behavior for £ > 1 is similar to sinuous chan-
nel modes (Fig. 12), however when £ is small, the behavior
differs. At small & there are two sinuous narrow-core instabili-
ties in channel flow whose growth rate scales like 1 /€. Inm = 1
pipe flow, there is no corresponding instability.

(b) Growth rates for£=0.2 and A= 0.3

0 5 10 15 20 25 a0
k

Fig. 17. UCM fluids. Convergence to the Wi = oo growth rate. As expected, convergence is faster for small k. The sinuous instability for Wi = 5 where k > Wi is
the wide-channel instability found by Renardy [1]. (a) Growth rate of varicose modes: & = 0.2 and A = 0.55, with Wi = 2, 4, 10, and oo. (b) Growth rate of sinuous

modes: £ = 0.2 and A = 0.3 with Wi =5, 10, 20, and oco.
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Fig. 18. Oldroyd-B fluids. Growth rates for varicose modes with & = 0.2. Compare with Fig. 6(a) for the UCM fluid. (a) 8 = 0.5. (b) B =0.75. (c) B =0.9. (d)

B = 0.99.

6. Other instabilities of channel coextrusion flow

We have observed some Wi > 1 instabilities when the outer
fluid layer is thin which do not fall into the long-wave, Couette-
like fast-flow, or narrow-core regimes. In these cases it appears
that the wall and interfacial boundary layers overlap.

6.1. UCM fluids

Fig. 23 shows a varicose instability for UCM fluids at £ =
0.0125 with A apparently approaching 1 as k — oo. The exis-
tence of this mode has been confirmed with both shooting and
spectral methods. The shooting method could not resolve the
behavior for k > 30, and the remaining results shown use the
spectral method. As k increases, the number of Chebyshev poly-
nomials retained per variable increases (from 70 successively to
240) resulting in apparent jumps in the growth rate. The exact
stability boundary should be regarded with some suspicion.

Because £ is small, the interfacial boundary layer in the outer
fluid reaches the wall. The shear rate variation across the bound-
ary layer is small (and decreases as k grows), and so the flow
near the interface is effectively Couette. However, we have per-
formed a partial search in Couette flow with similar parameters
and have not found a corresponding instability. We tentatively

suggest that the variation in shear rate, though small, may play
some role in the instability mechanism.

6.2. Oldroyd-B fluids

The contours in Fig. 18(c) for 8 = 0.9, £ = 0.2 show a max-
imum of the varicose growth rate at k =~ 50, A ~ 0.8. As k
increases the value of A for the associated mode appears to
approach 1, that is, the interface is close to the wall. Fig. 24
clearly shows that this instability is distinct from the Couette-
like fast-flow instability. A corresponding instability has been
found in Couette flow [3]. Both are unexplained.

7. Discussion

We have shown that in general the stability of large Wi
coextrusion flow in a channel or a pipe is closely related to
that of large Wi Couette channel flow, though the mode struc-
ture is different. However, when the interface is close to the
center, the Couette analysis no longer applies and we find a
new class of purely elastic interfacial instabilities for which
A ~ k™72, These narrow-core instabilities can exist at inter-
mediate wavenumbers when the k — 0 and k — oo limits are
both stable.
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Fig. 19. Pipe flow of UCM fluids. Growth rates for m = 0 mode with & = 0.2 and & = 0.3. Dashed lines in (a) and (b) show constant A2 (a) Growth rate of
most dangerous axisymmetric mode, £ = 0.2 < &.. (b) Growth rates of the two unstable axisymmetric modes, £ = 0.2, A = 0.58. (c) Growth rate of most dangerous
axisymmetric mode, & = 0.3 > &.. (d) Growth rate of the single unstable axisymmetric mode, & = 0.3, A = 0.54.

Fast-flow modes — for which the distance travelled by a fluid
particle in a relaxation time is large compared to both the wave-
length and the channel width — can be divided into Couette-like
fast-flow modes and narrow-core modes. The former depend
on a boundary layer at the interface with a thickness propor-
tional to the inverse shear rate. Provided that the shear rate
is effectively constant over the boundary layer width, the sta-
bility properties are identical to those of the fast-flow modes
found in Couette flow. Close to the center, however, the inverse
shear rate becomes large, while U’/ U”, the distance over which
the shear rate changes becomes small. The inverse shear rate is
not effectively constant over the boundary layer width, and the
narrow-core modes are found.

Through a parameter continuation argument we can conclude
the existence of instabilities in narrow-core modes without any
recourse to calculations. When & = 1 the growth rate of the
interfacial mode must be zero because the fluids are identical.
Generically there exists stability and instability on alternate sides
of £ = 1 because the derivative of the growth rate with respect
to & is nonzero (unbounded Couette flow is not generic owing
to a symmetry which is absent in coextrusion flow). The same
argument shows that if there are just two layers in the channel
with a single interface sufficiently close to the center there must
be narrow-core instabilities for some value of & close to one

(although the name is a misnomer in this case since there is no
core fluid).

We can extend these ideas to any constitutive model which
predicts an interfacial boundary layer thickness for a pertur-
bation flow which is inversely proportional to the shear rate
in Couette flow. Whenever the interface is close to the center-
line, the boundary layer structure must change because the local
inverse shear rate diverges. The growth rate must cross zero
when the two fluids are identical, and so we must have narrow-
core instabilities for some parameter values when the interface
is close to the center.

This argument suggests that the phenomenon of narrow-core
instability is robust for elastic liquids, but we are not aware of
experimental evidence to support our analysis.

We observe that the narrow-core instability may persist to
relatively large values of the Reynolds number, as long as the
flow remains laminar. The local Reynolds number (based on the
relative velocity and distance between the interface and center-
line) will be small even if the global Reynolds number is not.
Consequently inertia should be unimportant in the region that
determines the growth rate.

When the core is narrow in pipe flow, the curvature of the
interface is not negligible and so it affects the stability prop-
erties, qualitatively changing the narrow-core results. This is
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Fig. 20. Pipe flow of UCM fluids. Dots show modes for k = 100, A = 0.3. The solid lines are k — oo predictions from 2D Couette flow [3]. An additional stable
mode not predicted by [3] is depicted by circles. One mode could be calculated only for a limited range of & owing to interference of the insufficiently resolved
continuous spectrum [8]. (a) Imaginary part of w for m = 0 modes. (b) Real part of w for m = 0 modes. (c) Imaginary part of @ for m = 1 modes. (d) Real part of
o for m = 1 modes.
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Fig. 21. Pipe flow of UCM fluids. Marginal stability curves of m = 0 modes in (£, Ak'/?) space for k = 1000. U and S denote unstable and stable regions, respectively.
The stability boundary for 0.9 < & < 1, Ak'/2 > 3 is affected by low resolution. Compare with Fig. 11 for varicose channel modes.
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Fig. 22. Pipe flow of UCM fluids. Marginal stability curves of m = 1 modes in (£, Ak'/?) space for k = 1000. U and S denote unstable and stable regions, respectively.
Compare with Fig. 12 for sinuous channel modes. As in Fig. 21 the marginal stability curve for 0.8 < & < 1 is affected by poor resolution.
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Varicose modes: £ = 0.0125
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Fig. 23. Channel flow of UCM fluids. An unstable varicose mode appears at
large A and small &. This instability does not fall into any category previously
identified.

Linear Growth rates: p=0.9, A=0.8
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Fig. 24. Channel flow of an Oldroyd-B fluid. Varicose growth rates for £ = 0.2,
B =0.9, and A = 0.8. In addition to the Couette-like fast-flow mode having
constant growth rate as k — oo, there is an additional instability which exists
for moderate k.

particularly significant at small & where there is no instability
for cork-screw modes, while in sinuous channel modes there is
an instability with large growth rate.

In addition to the narrow-core instability, we have found some
other purely elastic instabilities when the interface is close to
the channel walls. These instabilities are not explained by the
analysis presented here, but occur for small values of £ in cir-
cumstances where the interfacial boundary layer in the outer
fluid overlaps the wall boundary layer.

The results of this paper suggest a wealth of possible future
weakly nonlinear study. A method for constructing a weakly
nonlinear analysis of flows with interfaces is given by Renardy
and Renardy [14]. It is necessary to consider the moderate k
instability as well as the k = 0 mode. Fig. 8 shows that two
separate moderate k modes are important for some parameters.
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Appendix A. Linear perturbation equations and
non-dimensionalization

A.l. Linear perturbation equations for channel flow

We now derive the linear perturbation equations for channel
flow. We consider a small perturbation to the base state, denot-
ing perturbation quantities by lowercase letters, with solutions
proportional to exp(ikx — iwt).

We use the symbol ‘D’ to denote a derivative with respect
to y. We introduce a streamfunction ¥ so that u = (D, —iky),
satisfying incompressibility automatically. Taking the curl of the
momentum equation yields the perturbed vorticity equation

2 1 - .
B> — K27y 4~ 4+ K + kD@ — ax)) = 0.
(A1)
The constitutive Eq. (3) gives
aayy = 2U'ary + 2(1 4+ 272U )ikDyr + 2tU' Dy
+472U'U"iky,
4 ) (A.2)
aary = U'ay + D>y + (1 4+ 272U k2 + iktU"y,
aay = 2k*tU"y — 2ikDy,
where o = —iw +1kU + 1/7.
The no-slip boundary condition at y = L gives
(L) =Dy(L) =0. (A.3)

If the perturbation is sinuous, v is an even function while v
is odd if the perturbation is varicose and thus

Dy(0) = D*y(0) = 0 (sinuous), (A4)

Y(0) =D*y(0) =0  (varicose). (A.5)
The interface is a material surface, so at the interface

(—lw + ikU)S = —iky (A.6)

where § measures interfacial perturbation and U and v are eval-
uated at the interface y = AL. The conditions at the interface
give

[¥1laL =0, (A7)

[DyliaL =0, (A.8)

[[ﬁD%p —2ikU" (1 — B)s + 1-F a12:|:| =0, (A.9)
T AL

[riov+ 22 (s )l
B-D¢¥ + —— ( ~Daiz — a1 +ax =0. (A.10)
k T k AL
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A.2. Linear perturbation equations for pipe flow

We now derive the linear perturbation equations for pipe flow,
following a similar non-dimensionalization to that of channel
flow (Section 2.2). We use (r, 6, z) variables with D now denot-
ing differentiation with respect to r. We look for linear modes
proportional to exp(ikz + im6 — iwt). If m = 0 we have axisym-
metric modes, analogous to varicose modes in a channel, and
if m = 1 we have cork-screw or helical modes, analogous to
sinuous modes. We have not considered other values of m.

The incompressibility condition becomes
1 im .

;D(rvr) + 71}9 +iv, =0, (A.11)
where u = (v, vy, v;). The r-, 6-, and z-components of the
momentum equation become

wi? . lay, . arz 1
D(—’p+a’)+a’+1ma’9+1az—aw=0,
T r T T

k T rT
(A.12)
1 . . W2
Lo () <_lp+ aee) % 0, (A1)
r T r k T T
1 ” i .
D (r )+ i (—p+ ) =0, (A.14)
r T rot T
The constitutive equations become
aa; = 2Dv, — 4irtv,., (A.15)
im Vg .
adg = — Uy + DU@ _— — 211'}"1)9, (A16)
r r
2.
aagy = —(imvg + vy), (A.17)
r
aay. = —2ray — 2trDu, + 8it*r?v, + Dv, — 2itrv,
k.
+2tv, + ler, (A.18)
.29 im
aag;, = —2rarg — 2trDvg + 8it“r vg + —v;
r
2t 4+ —i (A.19)
Ty + —5ivg, .
T Wizt

k
aay, = —4ra,, — 4wrDu, 4 16it*r?v, — 16721, + i v

(A.20)
where @ = —iw + ik — ir?> + 1/7. At the interface we have con-
tinuity of velocity
[v D agrz = el pgrrz = M Dl pg12 =0, (A.21)
and continuity of surface traction

k ay are
] - (2]
[[ b Wiz 1 :|:|Ak‘/2 T Jari2
- |[—8it8r2 n %}] -0 (A.22)
T 1 ak12

Note that the surface traction conditions do not involve m.
If the constitutive equation had a nonzero second normal stress
difference N;, then there would be m dependence. The perturbed
interface location is given by the kinematic condition

(—iw + ik — ir?)s = vy. (A.23)
A.2.1. Boundary conditions

At the walls r = k!/? no-slip gives
v, =0, vy=0, v,=0. (A.24)

The boundary conditions at the origin differ for m = 0 and
m = 1 [15]. For m = 0, incompressibility (A.11) implies
v(0)=0 (m=0). (A.25)

Because the streamwise perturbation velocity is smooth at
r =0, we find
Dv,(0)=0 (m=0). (A.20)

This condition can also be derived by assuming that the solu-
tion is regular and matching powers of r as r — 0. We assume

also that
v9(0) =0 (m =0). (A.27)

For m = 1, the incompressibility condition (A.11) gives

vy v, +ivg

— = iy,
or r

and so

v-(0) = —ivp(0) (m =1). (A.28)

Since both v, and p represent physical variables which cannot
depend on 6 at r = 0, we can further conclude
v;(00=p0)=0 (m=1). (A.29)

As for channel flow, if k/ Wi% « 1 we can eliminate k from
the problem except for specifying the location of the interface
and the cylinder wall. Assuming that the wall is far enough from
the interface to not affect the growth rate, we can use the sub-
stitution 2 = w — k to show that k and A appear only in the
combination Ak'/?.
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